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On basis of the known velocity field in a steady laminar flow system can Be determined the passing 
time along individual streamlines, identified by its end points in exit planes of the flow system. 
This primary information can be transformed into a form of residence time distribution functions 
which can be used in study of dynamic properties of considered flow systems such as chemical 
reactors or mixing devices. Hydrodynamically defined distribution functions, however, have 
in combination of several sub-systems into one entity different formal properties than analogous 
functions known from the classical theory of chemical flow reactors. This work presents the hydro
dynamic definition of distribution functions and the study of some of their properties in forming 
combined models of laminar flow systems inclusive the questions of scaling-up and hydrodynamic 
similarities. 

In flow of liquid through a flow system, the residence time of all liquid elements 
in the system is not the same. The simplest quantitative expression of this fact is given 
by some balance, for example by the distribution function of residence times F(t) 
or by the density of distribution of residence times E(t), for which is valid the relation 

dt E(t) = F(t + dt) - F(t). (1) 

The most common application of this integral description is the numerical estim~te of the 
reaction conversion in the flow reactor with the known distribution density of residence times 
based on kinetic data on reaction obtained in a laboratory batch reactor1•2 • The function of a flow 
system as a mixing equipment can be also described by distribution of residence times of the 
mixed materials3

•
4

• Under certain assumptions, the distribution of residence times represents 
the ability of the flow system to smoothen the axial concentration gradients resp. the gradients 
of other quantities eventually transform them into gradients perpendicular to the flow direction4 •5 • 

Recently, characterization of the flow system by the residence time was used also in hydrodynamic 
studies of visco-elastic and rheotropic liquids6

, especially in solving the problems of their flow 
in porous media 7 • 

In systems, where the effect of dispersion processes is significant, i.e. in molecular or turbulent 
diffusions, the distribution functions have statistical character since they describe the result 
of stochastic processes2

• In such case in their adequate application as well as in their evaluation 
from experiments of the "stimulus-response" type it is necessary to introduce further ideas and 
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assumptions the most important of which concerns the question of identification of a particle 
according to its time of residence in the system and according to residual time of residence 
in the system (conception of macro- and microliquid2 , conception of the degree of segregations) 
and the question of transport processes on the inlet and outlet surfaces (conception of closed 
and open systems2 , problematics of the so-called Danckwerts boundary conditions9). 

In the case of laminar streamline flow through the flow system the distribution 
functions F(t) and E(t) can be defined exclusively on basis of the velocity field as its 
integral characteristics. Thus defined distribution functions do not have a statistical 
but fully deterministic balance nature. In relation with actual flow systems they are 
of course asymptotic approximations, as they describe exactly actual processes in flow 
systems only in case when the effect of molecular diffusion can be fully neglected. 
This assumption is in many technically interesting cases very well fulfilled, especially 
in operations with highly viscous liquids. 

The usefullness of the mentioned approach seems to be also stressed by the ex
perience concerning the difficulties in experimental determination of distribution 
functions in laminar flow systems with a little effect of dispersion processes on the 
overall mass transfer. If in the place of inducing a stimulus (usually be seeding the 
tracer) is not attained a good cross-mixing over the whole inlet area, the experimental 
results depend very much on the way of inducing the stimulus. If we feed for example 
the tracer too close to the wall into the region of stagnating laminar flow, we de
termine the residence times much longer then would correspond to reality. Analogous 
problems arise at insufficient cross-mixing at the exit from the system in the point 
where the response is measured. For instance the location of the probe for 
continuous determination of the analytical quantity can affect the result very much, 
among others it can give an impression of existence of dead regions in the flow system 
etc. In general it can be said that deviations of measured courses of distribution 
functions from the courses determined mathematically on the basis of known velocity 
fields can be almost always, in case of laminar flow systems with unimportant diffusio
sion flows, ascribed to unsuitably performed experiments than to application of in
adequate ideas in calculation of distribution functions. 

The problem of calculation of distribution functions of residence times based 
on the known velocity fields and their application to the flow of highly viscous liquids 
has been very modestly studied so far. The only known works are concerned with the 
problematics of laminar flow in a tube both for Newtonian10

,ll and non-Newtonian 
liquids with the power-law viscosity functio1l12

,13. 

VELOCITY FIELDS AND DISTRIBUTION FUNCTIONS 

Let us discuss the flow systems with steady laminar flow of an incompressible homo
geneous liquid without volumetric sources and sinks. Velocity fields in the system 
are considered to be known. The whole volume in the system is the set of streamlines 
oriented in the direction of local velocities. 
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414 Wein, Ulbrecht: 

The boundary area of the system Atot can be divided into three sub-classes: the 
area of the shell (resp. the wall) Aw which is formed by a system of streamlines ; the 
inlet area A o which is intersected by all streamlines directed into the system ; the 
outlet area A which is intersected by all streamlines directed outward from the sys
tem. As under the above given assumptions no streamline can end or begin in the 
system 14, to each of the points of the inlet area Xo E Ao can be ascribed only one out
let point of the area x E A according to 

Xo = p(x) (2) 

in a mutually single-valued way so that x is the end and Xo = Po(x) the beginning 
of the same streamline in a considered system. 

Further on we identify the individual streamlines by their end point x (i.e. by their 
intersection with the outlet area A) and determine their properties .as a function 
of parameter x EA. We are interested especially in the passing time of a particle 8 
along the given streamline x, for which holds 

8 = 8(x) (3) 

and in the outlet velocity vector w on the given streamline x for which 

w = w(x). (4) 

We will demonstrate that the knowledge of functions (3) and (4) is sufficient for 
calculation of distribution functions E(t) and F(t). 

DISTRIBUTION FUNCTIONS 

Let us follow the liquid flowing from the considered system through the outlet 
area A. The oriented element of the outlet area dA is chosen so as to be directed 
outward from the system. Elementary volumetric flow is expressed by the relation 

dQ(x) = w(x) . dA(x) (5) 

and the overall volumetric flow-rate is given by the integral over the outlet area 
according to 

Q = fj'" w(x) . dA(x). 
xeA 

(6) 

The passing time 8 is a property of the liquid flowing from the system in a certain 
point of the outlet area x E A, resp. the property of this point of the outlet area. 
Based on this property, we can form sub-sets of points x E A and make use of them 
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in definition of distribution functions. Let At c A be a set of that points of the outlet 
area through which flows out the liquid having the passing time 9- equal or shorter 
than some given value t, then 

X E At =- (x E A & 8(x) ~ It) . (7) 

The distribution function of residence times F(t) is according to definition the 
ratio of liquid flowing through the area At to the total amount of flowing liquid, 
resp. the ratio of corresponding flow rates, and is given by 

F(t) = IjQ ffxEAtW(X), dA(x). (8) 

The distribution density of residence times E(t) could be in principle determined 
by derivation of the function F(t). This procedure which is rather complex and leading 
to inaccuracies in actual cases can be avoided and E(t) function can be calculated 
directly from the known functions (3) and (4). 

Let us begin with the definition of E-function in Eq. (1). This relation can be, 
after substituting for F(t) according to Eq. (8), written in the form 

Q dt E(t) = [f W • dA - [f w . dA , 
J. A t+d t JI At 

(9a) 

or 

Q dt E(t) = If w. dA , 
At,dt 

(9b) 

where Al,dl is an elementary area defined by relation 

X E At,dt =- (x E A & 8(x) E (t, t + dt») (10) 

i.e. as the set of points of the outlet area through which passes the liquid with the 
residence time 9- falling into the interval (t, t + dt), where t and dt are quantities 
chosen independently. 

The field of passing times 9-(x) is a continuous and continuously differentiable 
function so that the area Al ,dt is limited by two systems of curves K, and Kl,dt of final 
length which are sets of end-points of streamlines x E A on which the residence time 
is just equal to t resp. t + dt (Fig. 1): 

(II a) 

X EK, +dt =- (x E A& 8(x) = t + dt). (II b) 
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In an arbitrarily chosen point x E K t there can be fixed a local orthonormal 
base eA, eK, eN (Fig. 2) while eK and eN are situated in a plane tangential to the 
outlet flow area at point x E K. The surface gradient15 of the function .9(x) can be 
written in local Cartesian coordinates as 

(12) 

since .9 is not a function of XA, and XK is tangential to the curve K t of the constant 
9(x) = t at a given point x. For the given difference dt between the curves K t and 
K t +dt is the distance between these curves dXN(x) variable in dependence on the local 
value of the gradient V9, according to 

(13) 

The differential of area dA(x) at a given place x E K t (Fig. 2) can be, therefore, 
written in the form 

(14) 

as for the differentials holds the equality dK = dXK' By substitution into Eq. (9a) 
for dA according to Eq. (14) we obtain the relation 

Q dt E(t) = f dt w(x). eA(x) dK 
Kt I V.9(x) I 

(lSa) 

and thus 

E(t) = l!Q f wix) dK, 
Kt I V9(x) I 

where 
wA(x) = w(x) . eA(x). 

FIG.! 

Mapping of the Outlet Area x E A on Basis of Surface 
Field of Passing Times S(x) 

Hatched area A t dt> which in general is not contin
uous, is limited by the system of curves K t (solid lines) 
and K t +dt (dashed lines). On the curve K t is the origin 
of the orthogonal base, where eAhas the direction 
dA, eK is tangential to the curve K t and eN has the 
direction of gradient of function3(x). 
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Flow Kinematics 

The kinematics of a steady flow can be described in principle in two ways .- in the Euler way, 
i.e. by giving the velocity fields v in the Euclidean system r of the external observer, 

v = v(r); rEV, (I 7) 

or in the Lagrange way, i.e. by giving the hodograph (dependence of the instant position r on the 
suitable scalar parameter, most often the time variable) of a arbitrary particle identified by its 
position ro at a chosen time t = to, which is 

(I8a) 

(I8b) 

The result of solution of a hydrodynamic problem is usually the Eulerian description of kinema
tics (17). We are interested in transforming this description into data on the passing time S of par
ticles and on the inlet point Xo of particles into the system through given area Ao in dependence 
on the point x of their outlet from the system through the given area A, i.e. in determining the 
course of functions (3) and (4). 

It we consider the local velocity vCr) of the liquid as a velocity of motion of some 
identified particles of the liquid, the relation holds 

dp!dt = v(p) , (19a) 

where p is the instant position of the considered particle and t the time measured 
by the observer. When we measure the time for the given particle from its entry into 
the system through the point x o, i.e. if we introduce the new time variable ,,' by 

,,' = t - to, (20) 

where t = to is the moment of entrance of the particle into the system, the relation 
(19a) can be then written as 

dp/d,,' = v(p) (19b) 
with initial conditions 

p = X o ; ,,' = o. (21) 

The integral of differential system (19b) and (21) are relations 

(22a) 
which satisfy the condition 

X o = p(O). (22 b) 
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418 Wein, Ulbrecht : 

The relations (22a) are meaningful only for <:' E (0; T~), where T~ is the maximum 
value of the parameter <:', satisfying the relation p( T~) E A . 

Under certain conditions, which are always satisfied for steady laminar flow of an 
incompressible liquid in a system without volumetric sources and sinks, there exists 
for each Xo E Ao just one x E A and thus only one <:~ E (0; ex)). It is thus possible, 
by integration of the systems (19a) and (21) to obtain hodographs* 

p = p'(T', xo) Xo E A o , T' E (0, TO)' (23) 

while at the same time for each Xo E Ao exist~ only one <:~ (the passing time for the 
streamline xo) given by 

(24) 
satisfying the relation 

(25) 

by which there exists between x E A and Xo E Ao a single-valued correspondence. 

As the function (25) is invertible, it holds 

Xo = Po(X) , X E A, Xo E Ao (26) 

and the passing time along the given streamline x resp. Xo = Po(x) can be also expres
sed as a function of parameter x, according to 

FIG. 2 

Differential of Area d(A t d t) 

Point 1 is located 'at x, point 2 at 
x + eN dXN' 

(27) 

FIG. 3 

Flow through the Elementary Stream Tube 
Ao Inlet area, A outlet area, 0 origin of the 

reference coordinate system. 

Relation (23) is as well the parametric expression of the streamline, passing through 
the point xo ' 
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An alternate procedure giving the same results is introduction of parameter 't" as 

't" = tx - t, (28) 

where t is the time and t = tx is the instant of exit of the particle from the system 
in the point x E A, and integration of the corresponding differential system 

-dp!d't" = v(p); P E V. (I9c) 
with the initial condition 

P=X; 't"=0 . (29) 

The result is the hodographic function in the form 

p = p('t", x) (30) 

from which the required informations can be obtained in the form 

(31) 

p(.9(X), x) == Po(X) . (32) 

Mean Residence Time 

Let us consider the passing time .9 to be an intensive property of the liquid leaving 
the system in the point x, in a sense that to the mixture of volumes Vj of the liquid 
with the passing time .9 j j = 1, ... n can be ascribed the mean value [) according 
to the mixing rule 

(33a) 

resp., in case of mixing of different streams of invariable quality with constant flow 
rates Q j according to 

(33b) 

In laminar flow systems, according to the given definition, the mean residence time 
can be obviously expressed as 

[) = Sf A 9(x). dQ(x) = ~ If 9(x). w(x). dA(x). 
SfAdQ(x) Q A 

(34) 
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420 Wein, Ulbrecht : 

Let us consider the elementary stream tube across the whole flow system, limiting 
in the inlet area x E A an element dA( x), see Fig. 3. Let us limit a reference area dAp 
across the stream tube in its arbitrary positionp E V, P = p(x, -r),r E (0, .9(x)) so that 
the stream tube would be completely closed by it. According to the continuity equa
tion the volumetric flow rate of incompressible liquid is constant in randomly chosen 
cross-section of the stream tube, i.e. const = v(p(x, -r)) . dAp(p(x, -r)) = w(x) . dA(x). 
According to relation (19c) the elementary length of the stream tube dp can be 
expressed as dp = -v(p). d't" and the corresponding elementary volume of the stream 
tube d2 V (Fig. 3) can be expressed as d2 V = dAp(p). dp = (dAp(p). yep) d-r = 
= w(x). dA(x) d't". The overall volume of the elementary stream tube is thus given 
by the relation 

f
,9.(X) 

dV = w(x). dA(x) 0 d-r (35a) 

and the volume of the flow system as a sum of volumes of all stream tubes is conse
quently given by relation 

v = ffA .9(x) . w(x). dA(x) . (35b) 

From comparison of relations (34) and (35) follows 

8 = V/Q. (36) 

The same conclusion can be obtained in a simple way if we imagine individual stream tubes 
as elementary piston flow systems* with passing time 9j , volumes Vj

O and flow rates Qj' 

j = 1, ... , n. For a flow system with piston flow holds2 

According to definition of the mean residence time for steady flow systems (33b) it holds 

where V = L Vf is the sum of volumes of all stream tubes, leading into the outlet area A. 

Normalization of Distribution Functions and Kinematic Similarity 

According to definition of the mean residence time (33b) and of function E(t) by Eqs 
(9b), (10) holds 

Flow system with piston flow is a system in which all particles of the liquid have equal 
residence time2

• 
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i = f~ t E(t) dt = 9. = V/Q. (37) 

The mean residence time t can be used for normalization of E(t) function. The 
normalized time variable is defined by relation 

e = tit (38) 

and E function is normalized by parameter t according to 

(39) 

so that the normalized E + function complies with the two normalizing conditions 

(40a) 

(40b) 

Of the two flow systems which have identical E+(e) function we speak as of the 
systems with similar residence time distribution. The question of distribution simi
larity is significant most of all in applications where it is the theoretical basis for eva
luation of theoretical correlations, but it is also useful in our further studies as 
it is related to a great extent with the question of kinematic similarity of flow systems. 

Two flow systems are kinematicaly similar if their velocity fields with the use 
of dimensionless quantities 

v* = v/U, (41 a) 

r* = r/R, (41 b) 

can be written in an identical form 

v*(r*) = idem. (42) 

As a consequence of normalization (41b) of the Euclidean reference system and 
of normalization of the velocity fields (41 a) exists a number of relations defining 
dimensionless equivalent quantities which we use. To geometrical points of curves, 
areas and volumes r EK, A, V, now correspond relations r* E K*, A*, V* and the 
metrics of normalized forms is given by relations for their differentials, which are 
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dK* = R- 1 dK, 

dA* = R- 2 dA, 

dV* = R- 3 dV . 

Wein, Ulbrecht : 

(43a) 

(43b) 

(43c) 

Quantities Xo and x and p are elements of certain sub-sets Vand therefore they are 
normalized in the same way as radius vector r. The spacial and surface nabla-operator 
are normalized identicalI!y as 

V* = RV. (43d) 

The integral balances (6) and (35) can be written as 

Q* = ~ = ff w*(x*). dA*(x*) ;. 
UR A* 

!(44a) 

V* = ~ = -v-ff ,9+(x*). w*(x*). dA*(x*), 
R3 1 UR 2 

A* 
(44b) 

where, according to definition (38), we introduce the dimensionless equivalent of the 
passing time by relation 

,9+(x*) = ,9(Rx*)j!J. , (45) 

where, according to relation (37), is 1 = ,9 = vjQ. 
Expression of the course of normalized E*( e) function with the use of normalized 

description of the flow kinematics can be now obtained by simple substitution ac
cording to relations (38), (39), (43), (44) into the relation (I5b) 

E+(e) = l/Q* f w1(x*). dK*(x*) 
Ke* IV*,9+(x*)1 ' 

(46) 

where 
(47) 

and ,9+(x*) is defined by relation (45). 

Normalized passing times given by relation (45) are usually obtained in solving a specified 
problem not from the data in dimensional form (31), but as a result of solution of a dimension
less hydrodynamic problem where standardized dimensional factors U and R are chosen inde
pendently on the alternative pair of kinematic normalizing factors Q and V. In such case it is 
usual to define the dimensionless time variable in some other way, usually as 

t* = tUIR, (48) 

because only then no numerical factors appear in the normalized differential equation (J9c) 
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and in the corresponding hodographic function (30) which are thus given by 

-dP*/dt* = v*(P*) , 

P* = P*(t*, x*) = (1/ R) P(t* R/U, x* R) . 

The corresponding data on the passing time have obviously the form 

t* = t*(x*)¢>p*(t*(x*), x *) E A6, 
which can be transformed into relation (47): 

,9+ = t*Q*/V*, 

423 

(49) 

(50) 

(51) 

(52) 

where Q* and V*, defined by relations (44a,b) give the transformation relations between inde
pendent pairs of normalizing factors U and R resp. Vand Q. 

Since, however, for kinematically similar systems according to relation (44a, b) is Q* = idem, 
V* = idem, and according to relations (49), (50), (51) also t*(x*) = idem, obviously according 
to Eq. (46) is for them as well E+«(3) = idem. The kinematic similarity is not an indispensable 
condition for similarity of residence time distributions because different velocity fields can provide 
the same integral result, e.g., a parallel set of identical flow systems has obviously the same 
normalized distribution functions as one flow system of this set taken as one unit, though there 
can be no discussion on a kinematic similarity in the sense used here. Sufficient condition for 
similarity of distribution functions is the kinematic similarity only in the case considered by us 
when the effect of dispersion processes on mass transfer can be neglected. 

COMBINATION OF STREAMLINE SYSTEMS 

The studied flow systems are very often effectively divided into two or more sub
systems for which the velocity fields have specific symmetries or simple analytical 
expression and only then the results obtained for these sub-systems are used in the 
terms of residence time distributions. In the case of streamline flow come into con
sideration two basical ways of distribution: into parallel sub-systems which are 
formed by independent stream tubes (Fig. 4), or into sub-systems in a series formed 
by consecutive sections of the same stream tube (Fig. 5). These two basical forms 
can be, of course, combined in various ways similarly like in the theory of flow 

FIG. 4 

Parallel Combination of Streamline Flow 
Systems, n = 3 

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972) 

FIG. 5 

Serial Combination of Streamline Systems, 
m = 3 



424 Wein, Ulbrecht: 

reactors2 models of real systems are formed by series and parallel combining of two 
basi cal classical flow elements of an ideal flow mixer and an ideal piston flow system. 

The question which is for us of the prime interest in respect to combination of the 
streamline systems is the extent of informations on individual sub-systems necessary 
for their synthesis into description of distribution functions of the system as a whole. 

Parallel Combination 

The F-function is defined as the ratio of liquid from the total amount which has 
a certain property t, i.e. the residence time lessthan or equal to t. If the total amount 
of liquid passing through the i-th sub-system Qi> the quantity Q; F;(t) in the i-th 
sub-system has the mentioned property. In a system consisting ofn sub-systems is the 
total amount of the passed liquid with quality t given hy the sum of amounts inindi
vidual parallel flows, and thus it holds 

n 

F(t) = L: a; F;(t) , (53) 
1=1 

where 
a; = QdQ, (54) 

n 

Q = L: Q;. (55) 
;=1 

F(t) is the distribution function of the system as a whole and Q is the volumetric 
flow-rate through the system as a whole. According to definition of the E-function 
holds as well 

E(t) = t a i E;(t) . (56) 
;=1 

The normalized F-function differs from the non-normalized one only by the argu
ment because F-function itself is normalized by the condition F( (0) = 1. It is there
fore possible to write the definition of a normalized function F+ as 

(57) 

Let us begin with the assumption that for individual sub-systems we know their 
normalized distribution functions Ft and Ei, their volumes V; and flow-rates Q;, 
resp. the mean residence times t; = Vi! Q;. The mean residence time of the system 
as a whole is according to definition t = Vi Q, and the corresponding normalized 
time variable is Q = tQIV. Dimensionless equivalents of relations (56) and (57) then 
have the form 

(58) 
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(59) 
where 

(60) 

Serial Combination in Streamline Connection of the Sub-Systems 

Let the system as a whole be formed by a single stream tube divided into m sections 
(sub~systems) by control areas Al ... , Am - 1 and terminated by the outlet area Am 
(Fig. 5). We assume that each of the sub-systems is characterized by functions 
.9Jxi ) of residence times, and X i - 1 = XO,i = PO,;(Xi) of inlet points with the argument 
Xi E Ai the local exit point. Volumetric flow-rate Q is for all sub-systems the same 
different are their volumes Vi and their mean residence time ti = Vii Q. 

Each streamline can be identified by its intersection with any of control areas 
Ai' i = 1, ... , m. Let us choose one of them as a reference area of the whole system, 
for example Am. On the basis of known function 

(61) 

sets of mutual correspondence can ben be formed of individual intersections of the 
same streamline xo, xi> ... , xm with control areas of the sub-systems. This partial 
correspondence are thus single-valued and thus invertable so that on their basis 
may be formed mutually single-valued correspondence of points of any two control 
areas Ai' A j • For the chosen control area Am the correspondence may be formed 
by a composite function without inversions, which is 

(62) 

Thus to point xm correspond also the p~.ssing times .9 i (Xi ) in individual section s 
of a given streamline according to 

(63) 

The total passing time along the streamline is the sum of passing times along its 
individual sections 

(64) 

so that the gradient in the area Am of function S(xm) is the sum of gradients of func
tions (64); to their formation (63) is, however, necessary to know also the correspon
dence of individual control areas (62) for which 

(65) 
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426 Wein, Ulbrecht : 

The E(t) function of the system as a whole can be now written by Eq. (15b) as 

(66) 

where 
m 

Xm E Kt ¢> t = L 8i,m(xm) (67) 
i=1 

and where Xm E Am and Vm is the surface differential operator1S in the area Am. 
N ow, the normalized description of the flow kinematics in individual sections 

is considered to be the primary information, at the assumption, that normalizing 
factors Rand U and Q as well are for all sub-systems equally~chosen. Factors Vi are 
for individual systems in general different. According to assumption is xi = xJR, 
j = 1, .. . , m so that functions (63) are normalized trivially 

The passing times are normalized by the local mean times Ii = V;/Q, so that the 
normalized passing time 8 + through the system as a whole is given by relation 

8+(x,!) = (Q/V) 8(x!R) = L Ci 8~m(x!), 
;=1 

where V = V;, Ci = V;/Vso that according to Eq. (66) is 

where 

E+(8) = (V/Q)E(8V/Q) = 1/Q*J m w1(x!)dK* , 

L I C i V! 8i~m( x!)1 
KO .. i=l 

rn 

x! EK;'; ¢> 8 = L Ci 8~m(x!). 
i = 1 

m m 

After arrangement into a series it holds L ti = L V;/Q = V/Q = i. 
i=l i=1 

CONCLUSION 

(68) 

(69) 

(70) 

In classical works dealing with the questions of residence time distribution in agitated 
flo w systems1

,2,8 ,9 it is without mentioning assumed to a certain extent perfect mixing 
of liquid across the inlet and outlet areas of the flow system so that any distribution 
functions of outlet streams and consequently the distribution function of residence 
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times have a naturel of concentration data valid for a sample of liquid taken 
in any point of the outlet area. This assumption is not, however, fulfilled in the 
flow of highly viscous liquids, characterized overwhelmingly by laminar, streamline 
character of the flow and by very low coefficients of molecular diffusion. Over the inlet 
and outlet areas there exist in such case very expressive gradients of quantities charac
terizing the properties of liquid and the resulting effect, for inst. reaction in a cascade 
of mixed vessels, depends very strongly on the flow pattern at the place of their con
nection. Actual situation can, therefore, in certain respects often approach the 
hypothetic situation considered in this work, i.e. the situation when the only transport 
is the laminar convection. 

As it is obviou's from considerations on combination of streamline systems, in such 
case servev for an adequate description of the situation the field of passing times 8( x) 
and of outlet velocities w(x), from which the distribution functions can be quite 
easily determined with the use of relations (15h), (11 a) resp. (8), (7). The only informa
tion on distribution functions is not specific enough and on the other hand data on 
complete velocity fields are too wide for discussion of properties of flow system such 
as a reactor or a mixer. 

As follows from the characteristics of most of the highly viscous liquids, characteri
zed often by non-Newtonian flow anomalies, it is not realistic to base the hydrodynamic 
approach to the problematics of laminar flow systems on the dynamics of Newtonian 
isothermal flow. Therefore we have made no assumption on properties of the velocity 
field from those which follow from requirements of its continuity and from the conti
nuity equation for liquids with constant density. 

LIST OF SYMBOLS 

G j 

A 

Ao 
A lol 

Aw 
At 

At ,dt 

b j 

c j 

e j 

E(t) 
E+(e) 
F(t) 
F+(e) 

K t 
p 
Po(x) 

parameters, see Eq. (54) 
outlet area 
inlet area 
total boundary area 
area of the shell or of the walls 
part of outlet area, see Eq. (7) 
part of outlet area, see Eq. (10) 
parameter, see Eq. (60) 
parameter, see Eq. (68) 
vector of orthogonal basis 
density of residence time distribution 
normalized distribution density 
residence time distribution 
normalized distribution 
intersection of the outlet area and streamlines of constant passing time 
possition of liquid particle, hodograph 
mutual correspondence of inlet and outlet point situated on the same streamline 
radiusvector in Euclidean space 
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R 

w(x) 

x, X'o, Xw 

wA(x) 
8(x) 

characteristic dimension of the system, normalizing factor 
time recorded by the observer, residence time in the system 
local velocity 
local velocity in the outlet area 
points of planes A, Ao' Aw respectively 
projection of IV into the normal line to A in point x 
passing time along the streamline with the end point x 

Wein, Ulbrecht 

t','t' mean residence time of the particle in the system, see Eq. (20) and (28) 
passing time along the streamline with initial point Xo 

+ 

quantities averaged according to flow rate 
dimensionless quantities normalized by parameter U and R 
dimensionless quantities, normalized by parameter V and Q 
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